

1 Diversity and distribution of Nitrogen Fixation Genes in the Oxygen Minimum Zones of the

- 2 World Oceans
- 3 ¹Amal Jayakumar and ¹Bess B. Ward
- 4
- 5 ¹Department of Geosciences
- 6 Princeton University
- 7 Princeton, NJ 08544
- 8

```
9 Abstract
```

10 Diversity and community composition of nitrogen fixing microbes in the three main oxygen

11 minimum zones (OMZs) of the world ocean were investigated using operational taxonomic unit

12 (OTU) analysis of *nifH* clone libraries. Representatives of the all four main clusters of *nifH* genes

13 were detected. Cluster I sequences were most diverse in the surface waters and the most abundant

14 OTUs were affiliated with Alpha- and Gammaproteobacteria. Cluster II, III, IV assemblages were

15 most diverse at oxygen depleted depths and none of the sequences were closely related to sequences

16 from cultivated organisms. The OTUs were biogeographically distinct for the most part – there was

17 little overlap among regions, between depths or between cDNA and DNA. Only a few

18 cyanobacterial sequences were detected. The prevalence and diversity of microbes that harbour *nifH*

19 genes in the OMZ regions, where low rates of N fixation are reported, remains an enigma.

20

21 Introduction

22 Nitrogen fixation is the biological process that introduces new biologically available

23 nitrogen into the ocean, and thus constrains the overall productivity of large regions of the ocean

- 24 where N is limiting to primary production. The most abundant and most important diazotrophs
- 25 in the ocean are members of the filamentous genus *Trichodesmium* and several unicellular

26	genera, including Chrocosphaera sp. and the symbiotic genus Candidatus Atelocyanobacterium
27	thalassa (UCYN-A). Although these cyanobacterial species are wide spread and have different
28	biogeographical distributions (Moisander et al. 2010), they are restricted to surface waters,
29	mainly in tropical or subtropical regions.
30	Because diazotrophs have an ecological advantage in N depleted waters, and because those
31	conditions occur in the vicinity of oxygen minimum zones, due to the loss of fixed N by
32	denitrification, it has been proposed that N fixation should be favoured in regions of the ocean
33	influenced by OMZs (Deutsch et al. 2007). The search for non cyanobacterial diazotrophs has
34	resulted in discovery of diverse <i>nifH</i> genes, but they have not been associated with significant rates
35	of N fixation (Moisander et al. 2017). It has also been suggested that the energetic constraints on N
36	fixation might be partially alleviated under reducing, i.e., anoxic, conditions (Großkopf and LaRoche
37	2012). In response to these ideas, the search for organisms with the capacity to fix nitrogen has been
38	focused recently in regions of the ocean that contain OMZs. That search usually takes the form of
39	characterizing and quantifying one of the genes involved in the fixation reaction, <i>nifH</i> , which
40	encodes the dinitrogenase reductase enzyme. Here we report on the distribution and diversity of
41	nifH genes in all three of the world ocean's major OMZs, including samples from both surface and
42	anoxic depths, and both DNA and cDNA (i.e., both presence and expression of the <i>nifH</i> genes).
43	
44	Materials and Methods:
45	Samples analysed for this study were collected from the three major OMZ regions of the
46	world oceans (Table1) from surface, oxycline and oxygen depleted zone (ODZ) depths. Particulate

47 material from water samples (5 – 10 L), collected using Niskin samplers, mounted on a CTD

48 (Conductivity-Temperature-Depth) rosette system (Sea-Bird Electronics), was filtered onto Sterivex

49	capsules (0.2 µm filter, Millipore, Inc., Bedford, MA) immediately after collection using peristaltic
50	pumps. The filters were flash frozen in liquid nitrogen and stored at -80°C until DNA and RNA
51	could be extracted. For samples from the Arabian Sea, DNA extraction was carried out using the
52	PUREGENE TM Genomic DNA Isolation Kit (Qiagen, Germantown, MD) and the RNA was
53	extracted using the ALLPrep DNA/RNA Mini Kit (Qiagen, Germantown, MD). For samples
54	collected from ETNP and ETSP DNA and RNA were simultaneously extracted using the ALLPrep
55	DNA/RNA Mini Kit (Qiagen, Germantown, MD). SuperScript III First Strand Synthesis System
56	(Invitrogen, Carlsbad, CA, USA) was used to synthesise cDNA immediately after extraction
57	following purification of RNA using the procedure described by the manufacturer, including RT
58	controls. DNA was quantified using PicoGreen fluorescence (Molecular Probes, Eugene, OR)
59	calibrated with several dilutions of phage lambda standards.
60	PCR amplification of <i>nifH</i> genes from environmental sample DNA and cDNA was done on
61	an MJ100 Thermal Cycler (MJ Research) using Promega PCR kit following the nested reaction
62	(Zehr et al. 1998), with slight modification as in Jayakumar et al. (2017). Briefly, 25µl PCR
63	reactions containing 50 pmoles each of outer primer and 20-25ng of template DNA, were amplified
64	for 30 cycles (1 min at 98°C, 1 min at 57°C, 1 min at 72°C), followed by amplification with the
65	inner PCR primers 50 pmoles each (Zehr and McReynolds 1989). Water for negative controls and
66	PCR was freshly autoclaved and UV-irradiated every day. Negative controls were run with every
67	PCR experiment, to minimize the possibility of amplifying contaminants (Zehr et al. 2003). The
68	PCR preparation station was also UV irradiated for 1 hour before use each day and the number of
69	amplification cycles was limited to 30 for each reaction. Each reagent was tested separately for
70	amplification in negative controls. <i>nifH</i> bands were excised from PCR products after electrophoresis
71	on 1.2% agarose gel, and were cleaned using a QIAquick Nucleotide Removal Kit (Qiagen). Clean

72	nifH products were inserted into a pCR®2.1-TOPO® vector using One Shot® TOP10 Chemically
73	Competent E. coli, TOPO TA Cloning® Kit (Invitrogen) according to manufacturer's specifications.
74	Inserted fragments were amplified with M13 Forward (-20) and M13 Reverse primers from
75	randomly picked clones. PCR products were sequenced at Macrogen DNA Analysis Facility using
76	Big DyeTM terminator chemistry (Applied Biosystems, Carlsbad, CA, USA). Sequences were
77	edited using FinchTV ver. 1.4.0 (Geospiza Inc.), and checked for identity using BLAST. Consensus
78	nifH sequences (359 bp) were translated to amino acid (aa) sequences (108 aa after trimming the
79	primer region) and aligned using ClustalX (Thompson et al. 1997) along with published nifH
80	sequences from the NCBI database. Neighbor-joining trees were produced from the alignment using
81	distance matrix methods (PAUP 4.0, Sinauer Associates). Bootstrap analysis was used to estimate
82	the reliability of phylogenetic reconstruction (1000 iterations). The nifH sequence from
83	Methanosarcina lacustris (AAL02156) was used as an outgroup. The accession numbers from
84	GenBank for the <i>nifH</i> sequences in this study are Arabian Sea DNA sequences JF429940- JF429973
85	and cDNA sequences accession numbers JQ358610-JQ358707, ETNP DNA sequences KY967751-
86	KY967929 and cDNA sequence KY967930-KY968089, and ETSP DNA sequences MK408165-
87	MK408307 and cDNA sequences MK408308-MK408422.
88	
00	Standardizztion and availantian af an aifinite for O DCD array marfermed as described

Standardization and verification of specificity for Q-PCR assays was performed as described
previously (Jayakumar et al. 2009). Primers nifHfw and nifHrv (Mehta et al. 2003, Dang et al. 2013)
forward 5-GGHAARGGHGGHATHGGNAARTC-3 and reverse 5-

92 GGCATNGCRAANCCVCCRCANAC-3, which correspond to the amino acid positions 10 to 17

93 (GKGGIGKS) and 132 to 139 (VCGGFAMP) of Klebsiella pneumoniae numbering (Mehta et al.

94 2003), were used (100 pmoles per 25 mL reaction) to amplify a ~400 bp region of the *nifH* gene for

95	nifH quantification. Assays were carried out with Qiagen master mix (Qiagen Sciences, Maryland,
96	USA) at an annealing temperature of 56 °C. Amplification conditions were chosen based on
97	amplification efficiency and reproducible results with a single product, after test assays on a
98	Stratagene MX3000P (Agilent Technologies, La Jolla, CA, USA). The amplified products were
99	visualized after electrophoresis in a 1.0% agarose gels stained with ethidium bromide. Standards for
100	quantification were prepared by amplifying a constructed plasmid containing the <i>nifH</i> gene
101	fragment, followed by quantification and serial dilution. Assays for all depths were carried out
102	within a single assay plate (Smith et al. 2006). Each assay included triplicates of the no template
103	controls (NTC), no primer control (NPR), four or more standards, and 20-25ng of template DNA of
104	the environmental DNA samples. A subset of samples from the previous run was included in
105	subsequent assays, as well as a new dilution series for standard curves on every assay. These new
106	dilution series were produced immediately following re-quantification of plasmid DNA
107	concentrations to verify gene abundance (because concentrations declined upon storage and freeze-
108	thaw cycles). Automatic analysis settings were used to determine the threshold cycle (Ct) values.
109	The copy numbers were calculated according to: Copy number = $(ng * number/mole) / (bp * ng/g * ng/g * number/mole)$
110	g/mole of bp) and then converted to copy number per ml seawater filtered, assuming 100%
111	extraction efficiency.
112	

113 The nifH nucleotide alignment (of 787 sequences) was used to define operational taxonomic units (OTUs) on the basis of DNA sequence identity. Distance matrices based on this 114 nucleotide alignment were generated in MOTHUR (Schloss and Handlesman 2009). The 115 relative *nifH* richness within each clone library was evaluated using rarefaction analysis. OTUs 116 117 were defined as sequences which differed by $\leq 3\%$ using the furthest neighbor method in the

118

119	level at which species are conventionally defined using 16S rDNA sequences, so it may
120	overestimate the meaningful diversity of the functional gene.
121	
122	Results and Discussion:
123	DNA and cDNA sequences (787 in total) derived from the OMZ regions of the Arabian
124	Sea (AS), Eastern Tropical North Pacific (ETNP) and Eastern Tropical South Pacific (ETSP)
125	were subjected to OTU and phylogenetic analyses to compare the diversity and community
126	composition, biogeography and gene expression, of <i>nifH</i> possessing microbes among the three
127	OMZ regions. Phylogenetic analysis of the sequences from the AS, ETNP and ETSP were
128	reported previously (Jayakumar et al. 2012, Jayakumar et al. 2017, Chang et al. 2019), but the
129	sequences have been combined for additional analyses here. We compared the threshold OTU
130	definitions at 3 and 10% and found that the number of OTUs decreased, as expected, as the
131	resolution decreased. Even at the 3% threshold, however, OTUs tended to separate by depth and
132	location, indicating a functionally useful distinction at this level. Thresholds of $3 - 5\%$ as the
133	OTU definition correspond to within and between species level distinctions for <i>nifH</i> (Gaby et al.
134	2018). The sequences from the OMZ regions represented all four sequence clusters (I, II, III, IV)
135	described by Zehr et al. (1998).
136	
137	Cluster I nifH OTU distributions: Diversity analysis of the nifH cluster 1 sequences

MOTHUR program (Schloss and Handlesman 2009). The 3% OTU definition is similar to the

137 Cluster 1 *nifH* OTU distributions: Diversity analysis of the *nifH* cluster 1 sequences
138 for the three OMZs based on OTUs using MOTHUR identified 41 OTUs at a distance threshold
139 of 3% (Supplemental Table 1A and B). The number of sequences and the number of OTUs
140 varied widely among depths and stations, so the results are grouped by region (AS, ETNP,

141 ETSP) or depth horizon (surface or OMZ, including upper oxycline depths) or cDNA vs DNA

142 (Table 1).

143 For all regions and depths combined, the number of OTUs detected (41) was less than the 144 sum of OTUs detected when each region was analyzed separately (45), indicating that there was 145 some overlap of OTUs among regions. The overlap was not large, however. Only three of the 12 146 most abundant OTUs contained sequences from more than one region and none contained 147 sequences from all three regions (Figure 1A). When sequences for all three regions were 148 combined, only four of the 12 most abundant OTUs contained sequences from both depth 149 horizons (Figure 1B). Most OTUs represented a single depth, and many a single sample. 150 The Arabian Sea was strikingly less diverse than other regions and sample subsets (Figure 2). For example, when all DNA and cDNA sequences for all depths are grouped 151 152 together, the Arabian Sea (OTUs = 14, Chao = 21) contains less species richness than the 153 combined surface samples from all three regions (OTUs = 25, Chao = 52), despite having a similar number of total sequences (178 for the Arabian Sea, 198 for all surface samples 154 155 combined). This lack of diversity in the AS data may be partly due to the preponderance of 156 cDNA sequences, which generally contained less diversity than a similar number of DNA 157 sequences (see below). 158 Although similar numbers of sequences were obtained for cDNA (255) vs DNA (257), 159 the OTU "density", i.e., number of OTUs per number of sequences analyzed, was higher for

160 DNA (0.136 for DNA, 0.094 for cDNA). The Chao statistic verified this observation for the

- 161 combined data from each region in predicting higher total numbers of OTUs for DNA (Chao =
- 162 42) than for cDNA (Chao = 24). This difference could indicate that some of the *nifH* genes
- 163 present were not expressed at the time of sampling, but the cDNA sequences were not simply a

164	subset of the DNA community. Half of the 12 most abundant OTUs contained either cDNA or							
165	DNA (Figure 1C), meaning that some genes were never expressed and some expressed genes							
166	could not be detected in the DNA.							
167	For all regions combined, similar numbers of OTUs were detected in surface waters							
168	(OTUs = 25) and in OMZ samples $(OTUs = 23)$, although a larger number of sequences was							
169	analyzed for the OMZ environment (198 vs. 314 sequences for surface and OMZ depths,							
170	respectively). It might be expected that the presence of phototrophic diazotrophs in the surface							
171	water would lead to greater diversity there, but only one OTU representing a known							
172	cyanobacterial phototroph (OTU-12 = <i>Katagmynene spiralis</i> or <i>Trichodesmium</i>) was identified,							
173	so most of the additional diversity must be present in heterotrophic or unknown sequences.							
174	Rarefaction curves (Figure 2) indicate that sampling did not approach saturation either for							
175	region or depth. The Chao statistic also indicated that much diversity remains to be explored,							
176	despite the great uncertainty in these estimates. The total number of OTUs detected, the shape of							
177	the rarefaction curve and the diversity indicators (Figure 2, Table 1) all indicate that the greatest							
178	nifH diversity occurred in surface waters, and much of that diversity was in singletons, i.e., not							
179	represented in the 12 most abundant OTUs, which represented 441 (86 %) of the total 512 nifH							
180	Cluster 1 sequences analyzed. Most of that diversity was contained in the ETNP, not solely a							
181	function of number of sequences analyzed (Figure 2).							
182	Cluster I nifH Phylogeny: Phylogenetic affiliations at both DNA and protein level are							
183	shown for the 12 most abundant OTUs in Table 2. The most abundant OTU (129 sequences),							
184	OTU-1, contained Gammaproteobacterial DNA and cDNA sequences from both surface and							
185	OMZ depths of the ETNP and cDNA sequences from oxycline and OMZ depths in the Arabian							
186	Sea (Figure 3). Although very similar to each other, none of these sequences had higher than							

91% identity at the DNA level (96% at AA level) with cultivated strains and were most closely							
related to Pseudomonas stutzeri. P. stutzeri is a commonly isolated marine denitrifier, but it is							
also known to possess the capacity for N fixation (Krotzky and Werner 1987). OTU-4, OTU-6							
and OTU-8 also contained Gammaproteobacterial sequences. All had high identity with							
cultivated strains at the protein level but none were >91% identical to cultivated strains at the							
DNA level.							
Gammaproteobacterial sequences with very close identities to Azotobacter vinelandii have							
been reported from the Arabian Sea ODZ and also from the ETSP (Turk-Kubo et al. 2014). This							
group of nifH sequences with close identities to A. vinelandii was also retrieved from the English							
Channel, Himalayan soil, South Pacific gyre, Gulf of Mexico, mangrove soil and many other							
environments (Figure 3). Azotobacter- like sequences were included in OTU-6 but were not closest							
identity at the DNA level. Although a large number of clones were analyzed here, no sequence that							
was closely associated with A. vinelandii was retrieved from the three regions. None of the g-							
244774A11 sequences, Gammaproteobacterial relatives that were abundant in the South Pacific							
(Moisander et al. 2014), were detected in this study.							
OTUs-2, 3, 5, 10, and 11 all represented Alphaproteobacterial sequences, with closest							
identities to various Bradyrhizobium, Sphingomonas and Methylosinus species. Thus,							
Alphaproteobacterial sequences (206 sequences) were the most abundant in the clone library. OTU-2							
contained almost exclusively ETSP ODZ DNA and cDNA sequences (plus one AS ODZ DNA							
sequence). OTU-3 contained DNA sequences from ETNP surface waters. OTU-5 contained							
exclusively Arabian Sea DNA sequences from Station 3, while OTU-10 contained only surface							
samples from the ETNP. An OTU threshold of 11% grouped all (179 sequences in five OTUs) of							

209	these Alphaproteobacterial sequences together, but the 3% threshold is consistent with the
210	phylogenetic tree, which shows small scale biogeographical separation of sequence groups.
211	OTUs-7 and -9 were identified as Betaproteobacteria with closest identities to Rubrivivax
212	gelatinosum and Burkholderia, 91 and 90% respectively at the DNA level. However, at the AA
213	level, these sequences were 99 and 100% identical to Novosphingobium malaysiense and S.
214	azotifigens, both Alphaproteobacteria, and again were biogeographically distinct. OTU-7 contained
215	25 DNA sequences from the ODZ depths in the Arabian Sea, and OTU-9 contained 17
216	Burkholderia-like sequences from the oxycline at Station 1 in the Arabian Sea. No
217	Betaproteobacterial <i>nifH</i> sequences were detected in the ETNP or ETSP, but sequences similar to
218	Burkholderia phymatum, Cupriavidus sp. and Sinorhizobium meliloti were reported from ETSP
219	previously (Fernandez et al. 2015). Consistent with our previous report, however, there is no clear
220	separation between the alfa and the beta groups in <i>nifH</i> phylogeny (Jayakumar et al 2017).
221	Most of the Cluster I ETSP sequences from this study were contained in two OTUs (2 and 4).
222	OTU-2 contained 89 Alphaproteobacterial sequences with >98% identity to <i>nifH</i> sequences from
223	Bradyrhizobium sp. Uncultured bacterial sequences retrieved from the South China Sea, English
224	Channel, mangrove sediment, wastewater treatment and grassland soil were related to these ETSP
225	sequences. OTU-4 contained 29 Gammaproteobacterial sequences retrieved from both surface and
226	ODZ depths. Four of the remaining ETSP Cluster I sequences were grouped together as OTU-17
227	(Alphaproteobacteria, 89 and 96% identities with Methyloceanibacter sp. and Bradyrhizobium sp. at
228	the DNA and AA level respectively), three were in OTU-23 (Bradyrhizobium 100% identity) and
229	two were singletons. One of the singletons was most closely related to uncultured soil and sediment
230	sequences and to Azorhizobium sp. (86%) and one had 97% identity with Bradyrhizobium
231	denitrificans and many sequences from marine sediments.

232	OTU-22 represents the Deltaproteobacterial group. This novel group was reported							
233	previously from the ETNP (Jayakumar et al. 2017) and has three sequences from Arabian sea (OTU-							
234	22) and two singletons from ETNP surface waters. <i>nifH</i> possessing Deltaproteobacteria have been							
235	reported not only from all the three ODZs but also in several other marine environments including							
236	Chesapeake Bay water column, microbial mats from intertidal sandy beach in a Dutch barrier island,							
237	Jiaozhou Bay sediment, Rongcheng Bay sediment, Bohai Sea, Mediterranean Sea, Narragansett Bay,							
238	and the south Pacific gyre.							
239	Although Trichodesmium like clones have been retrieved from the surface waters of the							
240	Arabian Sea and the ETNP OMZs, only ten clones (OTU-12) in the combined clone library analyzed							
241	here were related to Trichodesmium (98% identity), including both cDNA and DNA from the							
242	Arabian Sea and cDNA from the ETNP. These sequences were actually 100% identical to							
243	Katagnymene spiralis, a close relative of Trichodesmium isolated from the South Pacific Ocean.							
244	Turk-Kubo et al. (2014) also retrieved only a few cyanobacterial sequences from the ETSP. No other							
245	cyanobacterial nifH sequences were identified.							
246	Clusters II, III, IV nifH OTU distributions: The other three nifH clusters were combined							
247	for OTU analysis due to the limited number of sequences and OTUs obtained. A total of 18 OTUs							
248	were identified in the combined set of 275 sequences with a 3% distance threshold (Table 2). Most							
249	of the Cluster II, III, IV sequences were from the ETNP and ETSP. As with the Cluster I sequences,							
250								
	there was very little geographic and depth overlap among these OTUs (Figure 4A, 4B). Only OTU-							
251	there was very little geographic and depth overlap among these OTUs (Figure 4A, 4B). Only OTU- 1 contained sequences from more than one site, the ETNP and the ETSP. OTU-2 contained only							
251 252	there was very little geographic and depth overlap among these OTUs (Figure 4A, 4B). Only OTU- 1 contained sequences from more than one site, the ETNP and the ETSP. OTU-2 contained only cDNA sequences representing ODZ depths at both ETNP stations. OTU-3 contained exclusively							
251 252 253	there was very little geographic and depth overlap among these OTUs (Figure 4A, 4B). Only OTU- 1 contained sequences from more than one site, the ETNP and the ETSP. OTU-2 contained only cDNA sequences representing ODZ depths at both ETNP stations. OTU-3 contained exclusively ETSP DNA sequences from surface and cDNA sequences from ODZ depths. Only 10 of the Cluster							

- "OTU density" than was present at either of the Pacific sites. As observed for Cluster I, most of the 255
- 256 OTUs that were detected in the DNA were not being expressed, and those that were expressed were

not detected in the DNA (Figure 4C). 257

Rarefaction curves (Figure 5) indicate that sampling for Cluster II, III, IV did not 258

approach saturation. The Chao statistic also indicated that much diversity remains to be 259

260 explored, despite the great uncertainty in these estimates. Unlike the Cluster I analysis, there

261 were relatively few singletons in the Cluster II, III, IV data and the assemblages were dominated 262 by a few types.

Clusters II, III, IV nifH phylogeny: Three large OTUs (OTU-1, -4 and -6) in Clusters II, 263

264 III, IV belonged to *nifH* Cluster IV and Alphaproteobacteria/Spirochaeta and Deltaproteobacteria

were the dominant phylogenies (Table 2, Figure 6). The largest OTU, OTU-1, contained 88 DNA 265

sequences from the ETNP ODZ depths from both stations and from both depths in the ETSP. This 266

267 OTU had no similarity to any cultured microbe. OTU-4 contained 30 sequences from the ETSP, all

268 cDNA from one surface station, in *nifH* Cluster IV.

OTU-2 (75 sequences) in Cluster II contained only cDNA sequences, all from ODZ 269

270 samples in the ETNP (both stations), and had no close relatives among cultivated species. Turk-

Kubo et al. (2014) also retrieved a few clones identified as belonging to Cluster II from the 271

euphotic zone of the ETSP. OTU-3 contained 35 sequences in Cluster III and was dominated by 272

273 DNA sequences from surface depths of the ETSP. OTU-5 represented Deltaproteobacteria in

- 274 nifH Cluster III and contained 18 identical DNA sequences from 90 m at Station BB1 in the
- ETNP. Thus, of the five most common OTUs (89% of the total Cluster II, III, IV sequences 275
- 276 analyzed), only one could be identified to a closely related genus (i.e., OTU-4 with 90% identity

with *R. palustris*) and there was no overlap between DNA and cDNA OTUs from the same

278 depths.

The other 13 OTUs in the Cluster II, III, IV sequences represented either Cluster III or IV. None of these were very closely related to any cultivated sequences. OTU-6 contained both DNA and cDNA from the OMZ at one ETSP station. OTU-7 contained four sequences from ETNP surface waters with close identities with a sequence retrieved from Bohai sea. OTU-11, had one DNA and one cDNA sequences from the ETSP. All of the other sequences were less than 84% identical to any sequence in the database and could only be loosely identified as Firmicutes or Proteobacteria.

286

287 Conclusions

288 The OMZ regions of the world ocean contain substantial *nifH* diversity, both in surface 289 waters and oxygen depleted intermediate depths. Surface waters contained greater diversity for 290 Cluster I, but the ODZ held the highest diversity for Clusters II, III, IV. Cyanobacterial sequences 291 were rare and were not detected in the ETSP. The ETSP contained the least diversity of Cluster I 292 sequences, while Cluster II, III, IV were least abundant and least diverse in the Arabian Sea. Most of the sequences in all four Clusters of the conventional *nifH* phylogeny were not closely related to 293 any sequences from cultivated Bacteria or Archaea. The most abundant OTUs in Cluster I and in 294 295 Clusters II, III, and IV could be assigned to the Alphaproteobacteria, followed by the 296 Gammaproteobacteria for Cluster I and Deltaproteobacteria accounted for Clusters II, III, IV 297 sequences. Most of the OTUs were not shared among regions, depths or DNA vs cDNA and 298 sometimes were restricted to individual samples. Some Cluster I sequences had high identity to 299 known species (e.g., Bradyrhizobium, Trichodesmium) but most of the Cluster II, III, IV sequences

- 300 were only distantly related to any cultured species. While measurements of N_2 fixation rates are not
- 301 reported here, the abundance of cDNA sequences suggests that the cells harboring these genes are
- 302 active. Low, but analytically significant, rates have been detected in ODZ depths in the ETNP
- 303 (Jayakumar et al. 2017) and ETSP (Chang et al. 2019), which suggests that non-cyanobacterial N
- fixation could make a minor contribution to the nitrogen budget of the ocean. It is therefore
- 305 important in future work to determine how the diversity described here actually contributes to
- 306 biogeochemically significant reactions and what environmental and biotic factors might influence or
- 307 control the activity of diazotrophs in the dark ocean.
- 308

310 Figure Legends

- Figure 1. Histogram of the 12 most common OTUs from Cluster I *nifH* clone libraries from the
- three OMZ regions. OTUs were considered common if the total number of sequences in an
- 313 OTU was $\geq 2\%$ of the total number of *nifH* clones analyzed (The common OTUs contained 441)
- of the 512 Cluster I sequences). OTUs were defined according to 3% nucleotide sequence
- difference using the furthest neighbor method. OTU designation is from most common (OTU-1)
- to least. A) OTU distribution among regions. B) OTU distribution between OMZ (including
- core of the ODZ and the upper oxycline depths) and surface depths (oxygenated water). C)
- 318 OTU distribution of cDNA vs DNA clones.
- 319
- 320
- 321 Figure 2. Rarefaction curve displaying observed OTU richness versus the number of clones
- 322 sequenced for Cluster I nifH sequences (cDNA and DNA). OTUs were defined and designated as

323 in Figure 1. Chao estimators (individual symbols) are shown for each of the same subsets

- 324 represented in the rarefaction curves.
- 325
- 326 Figure 3. Phylogenetic tree of Cluster 1 based on amino acid sequences. Positions of the OTUs
- 327 are shown relative to their nearest neighbors from the database. Individual sequence identities
- 328 comprising each OTU are listed in Supplemental Table 2.
- 329
- 330 Figure 4. Histogram of the 6 most common OTUs from Cluster I *nifH* clone libraries from the
- three OMZ regions. OTUs were considered common if the total number of sequences in an
- 332 OTU was $\geq 2\%$ of the total number of *nifH* clones analyzed (the common OTUs contained 252 of

- the 275 Cluster II, III, IV sequences). OTUs were defined according to 3% nucleotide sequence
- difference using the furthest neighbor method. OTU designation is from most common (OTU-1)
- to least. A) OTU distribution among regions. B) OTU distribution between OMZ (including
- core of the ODZ and the upper oxycline depths) and surface depths (oxygenated water). C)
- 337 OTU distribution of cDNA vs DNA clones.
- 338
- 339 Figure 5. Rarefaction curve displaying observed OTU richness versus the number of clones
- 340 sequenced for Cluster II, III, IV nifH sequences (cDNA and DNA). OTUs were defined and
- 341 designated as in Figure 4. Chao estimators (individual symbols) are shown for each of the same
- 342 subsets represented in the rarefaction curves.
- 343
- Figure 6. Phylogenetic tree of Clusters II, III, IV based on amino acid sequences. Positions of
- the OTUs are shown relative to their nearest neighbors from the database. Individual sequence

identities comprising each OTU are listed in Supplemental Table 2.

347

```
349 Tables
```

- 350 Table 1. OTU summary for both clusters
- 351 Richness and diversity statistics for *nifH* clone libraries from three OMZ regions. ACE and
- 352 Chao are non-parametric estimators that predict the total number of OTUs in the original sample.
- 353
- 354 Table 2. OTU identities for both clusters

- 355 Cultivated species with closest nucleotide identity to the OTUs identified in the *nifH* clone
- libraries from three OMZ regions. Only the 12 most common OTUs (out of 41 total) are listed
- for Cluster 1 sequences, and the six most common (out of 18 total) for the Clusters II, III, IV
- 358 libraries.
- 359
- 360 Supplemental
- 361
- 362 S Table 1A and B. List of sequences in each OTU for both clusters
- 363 S Table 2
- 364
- 365
- 366
- 367

370 371	1. Chang, B. X., Jayakumar, A., Widner, B., Bernhardt, P., Mordy, C. M., Mulholland, M. R. and Ward, B. B., 2019. Low rates of dinitrogen fixation in the eastern tropical South Pacific.							
372	LITITIOUSY AND UCCONSTAPTIY. 04, 1913-1923.							
373 374	Klotz, M. G., 2013. Environment-Dependent Distribution of the Sediment nifH-Harboring							
375	Microbiota in the Northern South China Sea. Applied and Environmental Microbiology.							
376	79. 121-132.							
377	3. Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N. and Dunne, J. P., 2007. Spatial							
378	coupling of nitrogen inputs and losses in the ocean. Nature. 445, 163-167.							
379	4. Fernandez, C., Lorena Gonzalez, M., Munoz, C., Molina, V. and Farias, L., 2015. Temporal and							
380	spatial variability of biological nitrogen fixation off the upwelling system of central Chile							
381	(35-38.5 degrees S). Journal of Geophysical Research-Oceans. 120, 3330-3349.							
382	5. Gaby, J. C., Rishishwar, L., Valderrama-Aguirre, L. C., Green, S. J., Valderrama-Aguirre. A.,							
383	Jordan, I. L. and Kostka, J. E., 2018. Diazotroph community characterization via a high-							
384	throughput nifH amplicon sequencing and analysis pipeline. Applied And Environmental							
385	Microbiology. 84, eO1512-01517.							
386	6. Großkopf, T. and LaRoche, J., 2012. Direct and indirect costs of dinitrogen fixation in							
387	Crocosphaera watsonii WH8501 and possible implications for the nitrogen cycle.							
388	Frontiers in Microbiology. 3.							
389	7. Jayakumar, A., Al-Rshaidat, M. M. D., Ward, B. B. and Mulholland, M. R., 2012. Diversity,							
390	distribution, and expression of diazotroph nifH genes in oxygen-deficient waters of the							
391	Arabian Sea. Fems Microbiology Ecology. 82, 597-606.							
392	8. Jayakumar, A., Chang, B. N. X., Widner, B., Bernhardt, P., Mulholland, M. R. and Ward, B. B.,							
393	2017. Biological nitrogen fixation in the oxygen-minimum region of the eastern tropical							
394	North Pacific ocean. Isme Journal. 11, 2356-2367.							
395	9. Jayakumar, A., Naqvi, S. W. A. and Ward, B. B., 2009. Distribution and relative quantification							
396	of key genes involved in fixed nitrogen loss from the Arabian Sea oxygen minimum zone.							
397	Indian Ocean Biogeochemical Processes and Ecological Variability. (J. D. Wiggert and R.							
398	R. Hood). American Geophysical Union, Washington, D. C.: 187-203.							
399	10. Krotzky, A. and Werner, D., 1987. NITROGEN-FIXATION IN PSEUDOMONAS-STUTZERI.							
400	Archives of Microbiology. 147, 48-57.							
401	11. Mehta, M. P., Butterfield, D. A. and Baross, J. A., 2003. Phylogenetic diversity of nitrogenase							
402	(nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca ridge.							
403	Applied and Environmental Microbiology. 69, 960-970.							
404	12. Moisander, P. H., Beinart, R. A., Hewson, I., White, A. E., Johnson, K. S., Carlson, C. A.,							
405	Montoya, J. P. and Zehr, J. P., 2010. Unicellular Cyanobacterial Distributions Broaden the							
406	Oceanic N-2 Fixation Domain. Science. 327, 1512-1514.							
407	13. Moisander, P. H., Benavides, M., Bonnet, S., Berman-Frank, I., White, A. E. and Riemann, L.,							
408	2017. Chasing after Non-cyanobacterial Nitrogen Fixation in Marine Pelagic							
409	Environments. Frontiers in Microbiology. 8.							

- 410 14. Moisander, P. H., Serros, T., Paerl, R. W., Beinart, R. A. and Zehr, J. P., 2014.
- 411Gammaproteobacterial diazotrophs and nifH gene expression in surface waters of the412South Pacific Ocean. The ISME Journal 8, 1962–1973.
- 413 15. Schloss, P. D. and Handlesman, J., 2009. Introducing DOTUR, a computer program for
 414 defining operational taxonomic units and estimating species richness. Applied and
 415 Environmental Microbiology. 71, 1501-1506.
- 416 16. Smith, C. J., Nedwell, D. B., Dong, L. F. and Osborn, A. M., 2006. Evaluation of quantitative
 417 polymerase chain reaction-based approaches for determining gene copy and gene
 418 the second se
- 418 transcript numbers in environmental samples. Environmental Microbiology. 8, 804-815.
- 419 17. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G., 1997. The
 420 CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided
 421 by quality analysis tools. Nucleic Acids Research. 25, 4876-4882.
- 422 18. Turk-Kubo, K. A., Karamchandani, M., Capone, D. G. and Zehr, J. P., 2014. The paradox of
 423 marine heterotrophic nitrogen fixation: abundances of heterotrophic diazotrophs do not
 424 account for nitrogen fixation rates in the Eastern Tropical South Pacific. Environmental
 425 Microbiology. 16, 3095-3114.
- 426 19. Zehr, J. P., Crumbliss, L. L., Church, M. J., Omoregie, E. O. and Jenkins, B. D., 2003.
 427 Nitrogenase genes in PCR and RT-PCR reagents: implications for studies of diversity of 428 functional genes. Biotechniques. 35, 996-1005.
- 20. Zehr, J. P. and McReynolds, L. A., 1989. Use of degenerate oligonucleotides for amplification
 of the *nifH* gene from the marine cyanobacterium *Trichodesmium theiebautii*. Applied
 and Environmental Microbiology. 55, 2522-2526.
- 21. Zehr, J. P., Mellon, M. T. and Zani, S., 1998. New nitrogen-fixing microorganisms detected in
 oligotrophic oceans by amplification of nitrogenase (nifH) genes. Applied and
 Environmental Microbiology. 6, 3444-3450.
- 435

437 438 Figure.1

440 Figure. 2

443 Figure. 3

— 0.01 changes

446 Figure. 4

449 Figure. 5.

452 Figure 6.

Table 1 OTU Summary

455

Sample subset Cluster I	Depths, regions included	No. of Sequences	No. of Unique Sequences	No. of OTUs (cutoff ~3)	OTU /seq	Shannon	Simpson	Chao	Ace
AS	Arabian Sea, all depths	178	36	14	0.079	1.8	0.22	21	45
ETNP	ETNP, all depths	207	80	25	0.121	2.37	0.14	37	34
ETSP	ETSP, OMZ depths	127	51	6	0.047	0.87	0.53	7	8
All Clusterl	Three regions, all depths	512	165	41	0.080	2.7	0.11	59	67
All Clusterl DNA	Three regions, all depths	257	97	35	0.136	2.8	0.08	42	45
All Clusterl cDNA	Three regions, all	255	75	24	0.094	1.7	0.25	24	27
All Clusterl Surface	Three regions, surface denths	198	73	25	0.126	2.5	0.10	52	75
All Clusterl OMZ	Three regions, all depths	314	98	23	0.073	0.9	0.23	30	37
Clusters II, III, IV									
AS	Arabian Sea, all depths	10	6	3	0.300	1.09	0.27	3	3
ETNP	ETNP, all depths	134	49	8	0.060	1.19	0.39	14	38
ETSP	ETSP, all depths	131	64	8	0.061	1.37	0.30	9	19
All Clusters II,III,IV	Three regions, all depths	275	117	18	0.065	1.88	0.21	28	26
All Clusters II,III,IV DNA	Three regions, all depths	155	65	12	0.077	1.20	0.37	22	17
All Clusters II,III,IV cDNA	Three regions, all depths	120	56	9	0.075	1.11	0.45	12	15
All Clusters II,III,IV Surface	Three regions, surface depths	86	46	6	0.070	1.32	0.29	7	13
All Clusters II,III IV OMZ	Three regions, OMZ depths	189	76	15	0.079	1.57	0.29	46	24

456 457

458

460 Table 2 461

	No. of Sequences	Phylogenetic Affiliation	Closest cultured relative (DNA)	Identity DNA %	Coverage %	Closest cultured relative (Protein)	Identity AA %	Coverage %
Cluster								
OTU-1	129	Gamma	Psuedomonas stutzeri	91	98	Pseudomonas stutzeri strain SGAir0442	95.8	99
OTU-2	89	Alpha	Bradyrhizobium sp	99	100	Bradyrhizobium denitrificans strain I MG 8443	99	99
OTU-3	40	Alpha	Bradyrhizobium sn TM124	94	98	Bradyrhizobium sp. MAFE 210318	99	98
OTU-4	29	Gamma	Marinobacterium lutimaris	87	100	Oleibacter sp	100	99
OTU-5	29	Alpha	Methylosinus trichosporium	92	99	Sphingomonas azotifiaens	99	100
OTU-6	25	Gamma	Azotobacter chroococcum strain B3	81	99	Psuedomonas stutzeri	94	99
OTU-7	25	Beta/Alpha	Rubrivivax aelatinosus	91	99	Novosphingobium malasiense	99	100
OTU-8	17	Gamma	Psuedomonas stutzeri	91	98	Azotobacter chroococcum strain B3	97	100
OTU-9	17	Beta/Alfa	Burkholderia	90	100	Sphingomonas azotifiaens	100	100
OTU-10	16	Alpha	Bradyrhizobium	97	98	Bradyrhizobium sp. ORS 285	99	99
OTU-11	15	Alpha	Bradyrhizobium	97	98	Bradyrhizobium diazoefficiens	98	99
OTU-12	10	Cyanobacterium	Katagnymene spiralis	100	99	Trichodesmium erythraeum	100	99
Clusters I	I, III IV							
OTU-1	88	Alpha/Spirochaet	Rhizobium sp	74	59	Treponema primitia 7∆S-11	55	98
OTU-2	75	Delta/Firmicutes	Geobacter	73	43	Desulfitobacterium hafniense	98	61
OTU-3	35	Verrumicrobia	Opitutaceae bacterium	82	99	Coraliomargarita akajimensis	95	99
OTU-4	30	Alpha	Rhodopseudomon as palustris	90	98	Rhodoplanes	96	99
OTU-5	18	Delta/Chlorobi	Desulfovibrio	79	99	elegans Prosthecochloris	92	99
			piezophilus			sp. V1.		
						Chloroherpeton		
						thalassium,		
						Chloroherpeton		
						thalassium		
OTU-6	6	Beta/Delta	Azoarcus communis	70	88	Enhygromyxa salina	70	74
OTU-7	4	Delta	Desulfovibrio carbinolicus strain	81	99	Desulfovibrio	90	99
OTU-8	4	Delta/Firmicutes	DSM 3852 Desulfovibrio desulfuricans strain IC1	77	100	<i>inopinatus</i> Sporobacter termitidis	99	99

(OTU-9	3	Delta/Lentisphae rae	Desulfovibrio magneticus RS-1 DNA	84	100	Lentisphaerae bacterium GWF2_57_35, Desulfatitalea tepidiphila, Desulfobacteraceae bacterium	84	100
(OTU-10	3	Delta/Methanoc occi	Desulfovibrio desulfuricans strain IC1	77	100	Methanocaldococcus villosus	65	99
(OTU-11	2	Verrucomicrobi a	Verrucomicrobia bacterium S94	87	100	Verrucomicrobia bacterium S94	97	99
462									
463									
464									