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Abstract 9 

Diversity and community composition of nitrogen fixing microbes in the three main oxygen 10 

minimum zones (OMZs) of the world ocean were investigated using operational taxonomic unit 11 

(OTU) analysis of nifH clone libraries.  Representatives of the all four main clusters of nifH genes 12 

were detected.  Cluster I sequences were most diverse in the surface waters and the most abundant 13 

OTUs were affiliated with Alpha- and Gammaproteobacteria.  Cluster II, III, IV assemblages were 14 

most diverse at oxygen depleted depths and none of the sequences were closely related to sequences 15 

from cultivated organisms.  The OTUs were biogeographically distinct for the most part – there was 16 

little overlap among regions, between depths or between cDNA and DNA.  Only a few 17 

cyanobacterial sequences were detected.  The prevalence and diversity of microbes that harbour nifH 18 

genes in the OMZ regions, where low rates of N fixation are reported, remains an enigma. 19 

 20 

Introduction 21 

Nitrogen fixation is the biological process that introduces new biologically available 22 

nitrogen into the ocean, and thus constrains the overall productivity of large regions of the ocean 23 

where N is limiting to primary production.  The most abundant and most important diazotrophs 24 

in the ocean are members of the filamentous genus Trichodesmium and several unicellular 25 
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genera, including Chrocosphaera sp. and the symbiotic genus Candidatus Atelocyanobacterium 26 

thalassa (UCYN-A).  Although these cyanobacterial species are wide spread and have different 27 

biogeographical distributions (Moisander et al. 2010), they are restricted to surface waters, 28 

mainly in tropical or subtropical regions.   29 

Because diazotrophs have an ecological advantage in N depleted waters, and because those 30 

conditions occur in the vicinity of oxygen minimum zones, due to the loss of fixed N by 31 

denitrification, it has been proposed that N fixation should be favoured in regions of the ocean 32 

influenced by OMZs (Deutsch et al. 2007). The search for non cyanobacterial diazotrophs has 33 

resulted in discovery of diverse nifH genes, but they have not been associated with significant rates 34 

of N fixation (Moisander et al. 2017).  It has also been suggested that the energetic constraints on N 35 

fixation might be partially alleviated under reducing, i.e., anoxic, conditions (Großkopf and LaRoche 36 

2012).  In response to these ideas, the search for organisms with the capacity to fix nitrogen has been 37 

focused recently in regions of the ocean that contain OMZs.  That search usually takes the form of 38 

characterizing and quantifying one of the genes involved in the fixation reaction, nifH, which 39 

encodes the dinitrogenase reductase enzyme.  Here we report on the distribution and diversity of 40 

nifH genes in all three of the world ocean’s major OMZs, including samples from both surface and 41 

anoxic depths, and both DNA and cDNA (i.e., both presence and expression of the nifH genes). 42 

 43 

Materials and Methods: 44 

Samples analysed for this study were collected from the three major OMZ regions of the 45 

world oceans (Table1) from surface, oxycline and oxygen depleted zone (ODZ) depths. Particulate 46 

material from water samples (5 – 10 L), collected using Niskin samplers, mounted on a CTD 47 

(Conductivity-Temperature-Depth) rosette system (Sea-Bird Electronics), was filtered onto Sterivex 48 
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capsules (0.2 µm filter, Millipore, Inc., Bedford, MA) immediately after collection using peristaltic 49 

pumps. The filters were flash frozen in liquid nitrogen and stored at -80°C until DNA and RNA 50 

could be extracted. For samples from the Arabian Sea, DNA extraction was carried out using the 51 

PUREGENETM Genomic DNA Isolation Kit (Qiagen, Germantown, MD) and the RNA was 52 

extracted using the ALLPrep DNA/RNA Mini Kit (Qiagen, Germantown, MD). For samples 53 

collected from ETNP and ETSP DNA and RNA were simultaneously extracted using the ALLPrep 54 

DNA/RNA Mini Kit (Qiagen, Germantown, MD). SuperScript III First Strand Synthesis System 55 

(Invitrogen, Carlsbad, CA, USA) was used to synthesise cDNA immediately after extraction 56 

following purification of RNA using the procedure described by the manufacturer, including RT 57 

controls. DNA was quantified using PicoGreen fluorescence (Molecular Probes, Eugene, OR) 58 

calibrated with several dilutions of phage lambda standards.  59 

PCR amplification of nifH genes from environmental sample DNA and cDNA was done on 60 

an MJ100 Thermal Cycler (MJ Research) using Promega PCR kit following the nested reaction 61 

(Zehr et al. 1998), with slight modification as in Jayakumar et al. (2017). Briefly,  25µl PCR 62 

reactions containing 50 pmoles each of outer primer and 20-25ng of template DNA, were amplified 63 

for 30 cycles  (1 min at 98°C, 1 min at 57°C, 1 min at 72°C), followed by amplification with the 64 

inner PCR primers 50 pmoles each  (Zehr and McReynolds 1989). Water for negative controls and 65 

PCR was freshly autoclaved and UV-irradiated every day.  Negative controls were run with every 66 

PCR experiment, to minimize the possibility of amplifying contaminants (Zehr et al. 2003). The 67 

PCR preparation station was also UV irradiated for 1 hour before use each day and the number of 68 

amplification cycles was limited to 30 for each reaction. Each reagent was tested separately for 69 

amplification in negative controls. nifH bands were excised from PCR products after electrophoresis 70 

on 1.2% agarose gel, and were cleaned using a QIAquick Nucleotide Removal Kit (Qiagen).  Clean 71 
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nifH products were inserted into a pCR®2.1-TOPO® vector using One Shot® TOP10 Chemically 72 

Competent E. coli, TOPO TA Cloning® Kit (Invitrogen) according to manufacturer’s specifications. 73 

Inserted fragments were amplified with M13 Forward (-20) and M13 Reverse primers from 74 

randomly picked clones.  PCR products were sequenced at Macrogen DNA Analysis Facility using 75 

Big DyeTM terminator chemistry (Applied Biosystems, Carlsbad, CA, USA). Sequences were 76 

edited using FinchTV ver. 1.4.0 (Geospiza Inc.), and checked for identity using BLAST. Consensus 77 

nifH sequences (359 bp) were translated to amino acid (aa) sequences (108 aa after trimming the 78 

primer region) and aligned using ClustalX (Thompson et al. 1997) along with published nifH 79 

sequences from the NCBI database.  Neighbor-joining trees were produced from the alignment using 80 

distance matrix methods (PAUP 4.0, Sinauer Associates). Bootstrap analysis was used to estimate 81 

the reliability of phylogenetic reconstruction (1000 iterations).  The nifH sequence from 82 

Methanosarcina lacustris (AAL02156) was used as an outgroup. The accession numbers  from 83 

GenBank for the nifH sequences in this study are Arabian Sea DNA sequences JF429940– JF429973 84 

and cDNA sequences accession numbers JQ358610–JQ358707,  ETNP DNA sequences KY967751-85 

KY967929 and cDNA sequence KY967930-KY968089, and ETSP DNA sequences MK408165–86 

MK408307 and cDNA sequences MK408308–MK408422. 87 

 88 

Standardization and verification of specificity for Q-PCR assays was performed as described 89 

previously (Jayakumar et al. 2009). Primers nifHfw and nifHrv (Mehta et al. 2003, Dang et al. 2013) 90 

forward 5-GGHAARGGHGGHATHGGNAARTC-3 and reverse 5-91 

GGCATNGCRAANCCVCCRCANAC-3, which correspond to the amino acid positions 10 to 17 92 

(GKGGIGKS) and 132 to 139 (VCGGFAMP) of Klebsiella pneumoniae numbering (Mehta et al. 93 

2003), were used (100 pmoles per 25 mL reaction) to amplify a ~400 bp region of the nifH gene for 94 
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nifH quantification. Assays were carried out with Qiagen master mix (Qiagen Sciences, Maryland, 95 

USA) at an annealing temperature of 56 °C.  Amplification conditions were chosen based on 96 

amplification efficiency and reproducible results with a single product, after test assays on a 97 

Stratagene MX3000P (Agilent Technologies, La Jolla, CA, USA). The amplified products were 98 

visualized after electrophoresis in a 1.0% agarose gels stained with ethidium bromide. Standards for 99 

quantification were prepared by amplifying a constructed plasmid containing the nifH gene 100 

fragment, followed by quantification and serial dilution.  Assays for all depths were carried out 101 

within a single assay plate (Smith et al. 2006). Each assay included triplicates of the no template 102 

controls (NTC), no primer control (NPR), four or more standards, and 20-25ng of template DNA of 103 

the environmental DNA samples. A subset of samples from the previous run was included in 104 

subsequent assays, as well as a new dilution series for standard curves on every assay. These new 105 

dilution series were produced immediately following re-quantification of plasmid DNA 106 

concentrations to verify gene abundance (because concentrations declined upon storage and freeze–107 

thaw cycles). Automatic analysis settings were used to determine the threshold cycle (Ct) values.  108 

The copy numbers were calculated according to: Copy number = (ng * number/mole) / (bp * ng/g * 109 

g/ mole of bp) and then converted to copy number per ml seawater filtered, assuming 100% 110 

extraction efficiency. 111 

 112 

The nifH nucleotide alignment (of 787 sequences) was used to define operational 113 

taxonomic units (OTUs) on the basis of DNA sequence identity.  Distance matrices based on this 114 

nucleotide alignment were generated in MOTHUR (Schloss and Handlesman 2009).  The 115 

relative nifH richness within each clone library was evaluated using rarefaction analysis.  OTUs 116 

were defined as sequences which differed by ≤3% using the furthest neighbor method in the 117 
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MOTHUR program (Schloss and Handlesman 2009).  The 3% OTU definition is similar to the 118 

level at which species are conventionally defined using 16S rDNA sequences, so it may 119 

overestimate the meaningful diversity of the functional gene.   120 

 121 

Results and Discussion: 122 

DNA and cDNA sequences (787 in total) derived from the OMZ regions of the Arabian 123 

Sea (AS), Eastern Tropical North Pacific (ETNP) and Eastern Tropical South Pacific (ETSP) 124 

were subjected to OTU  and phylogenetic analyses to compare the diversity and community 125 

composition, biogeography and gene expression, of nifH possessing microbes among the three 126 

OMZ regions. Phylogenetic analysis of the sequences from the AS, ETNP and ETSP were 127 

reported previously (Jayakumar et al. 2012, Jayakumar et al. 2017, Chang et al. 2019), but the 128 

sequences have been combined for additional analyses here. We compared the threshold OTU 129 

definitions at 3 and 10% and found that the number of OTUs decreased, as expected, as the 130 

resolution decreased.  Even at the 3% threshold, however, OTUs tended to separate by depth and 131 

location, indicating a functionally useful distinction at this level. Thresholds of 3 – 5% as the 132 

OTU definition correspond to within and between species level distinctions for nifH (Gaby et al. 133 

2018).  The sequences from the OMZ regions represented all four sequence clusters (I, II, III, IV) 134 

described by Zehr et al. (1998). 135 

 136 

Cluster I nifH OTU distributions:  Diversity analysis of the nifH cluster 1 sequences 137 

for the three OMZs based on OTUs using MOTHUR identified 41 OTUs at a distance threshold 138 

of 3% (Supplemental Table 1A and B).  The number of sequences and the number of OTUs 139 

varied widely among depths and stations, so the results are grouped by region (AS, ETNP, 140 
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ETSP) or depth horizon (surface or OMZ, including upper oxycline depths) or cDNA vs DNA 141 

(Table 1).  142 

For all regions and depths combined, the number of OTUs detected (41) was less than the 143 

sum of OTUs detected when each region was analyzed separately (45), indicating that there was 144 

some overlap of OTUs among regions. The overlap was not large, however. Only three of the 12 145 

most abundant OTUs contained sequences from more than one region and none contained 146 

sequences from all three regions (Figure 1A).  When sequences for all three regions were 147 

combined, only four of the 12 most abundant OTUs contained sequences from both depth 148 

horizons (Figure 1B). Most OTUs represented a single depth, and many a single sample.   149 

The Arabian Sea was strikingly less diverse than other regions and sample subsets 150 

(Figure 2).  For example, when all DNA and cDNA sequences for all depths are grouped 151 

together, the Arabian Sea (OTUs = 14, Chao = 21) contains less species richness than the 152 

combined surface samples from all three regions (OTUs = 25, Chao = 52), despite having a 153 

similar number of total sequences (178 for the Arabian Sea, 198 for all surface samples 154 

combined).  This lack of diversity in the AS data may be partly due to the preponderance of 155 

cDNA sequences, which generally contained less diversity than a similar number of DNA 156 

sequences (see below). 157 

Although similar numbers of sequences were obtained for cDNA (255) vs DNA (257), 158 

the OTU “density”, i.e., number of OTUs per number of sequences analyzed, was higher for 159 

DNA (0.136 for DNA, 0.094 for cDNA).  The Chao statistic verified this observation for the 160 

combined data from each region in predicting higher total numbers of OTUs for DNA (Chao = 161 

42) than for cDNA (Chao = 24).  This difference could indicate that some of the nifH genes 162 

present were not expressed at the time of sampling, but the cDNA sequences were not simply a 163 
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subset of the DNA community. Half of the 12 most abundant OTUs contained either cDNA or 164 

DNA (Figure 1C), meaning that some genes were never expressed and some expressed genes 165 

could not be detected in the DNA.   166 

For all regions combined, similar numbers of OTUs were detected in surface waters 167 

(OTUs = 25) and in OMZ samples (OTUs = 23), although a larger number of sequences was 168 

analyzed for the OMZ environment (198 vs. 314 sequences for surface and OMZ depths, 169 

respectively).  It might be expected that the presence of phototrophic diazotrophs in the surface 170 

water would lead to greater diversity there, but only one OTU representing a known 171 

cyanobacterial phototroph (OTU-12 = Katagmynene spiralis or Trichodesmium) was identified, 172 

so most of the additional diversity must be present in heterotrophic or unknown sequences. 173 

Rarefaction curves (Figure 2) indicate that sampling did not approach saturation either for  174 

region or depth.  The Chao statistic also indicated that much diversity remains to be explored, 175 

despite the great uncertainty in these estimates.  The total number of OTUs detected, the shape of 176 

the rarefaction curve and the diversity indicators (Figure 2, Table 1) all indicate that the greatest 177 

nifH diversity occurred in surface waters, and much of that diversity was in singletons, i.e., not 178 

represented in the 12 most abundant OTUs, which represented 441 (86 %) of the total 512 nifH 179 

Cluster 1 sequences analyzed.  Most of that diversity was contained in the ETNP, not solely a 180 

function of number of sequences analyzed (Figure 2). 181 

Cluster I nifH Phylogeny:  Phylogenetic affiliations at both DNA and protein level are 182 

shown for the 12 most abundant OTUs in Table 2. The most abundant OTU (129 sequences), 183 

OTU-1, contained Gammaproteobacterial DNA and cDNA sequences from both surface and 184 

OMZ depths of the ETNP and cDNA sequences from oxycline and OMZ depths in the Arabian 185 

Sea (Figure 3).  Although very similar to each other, none of these sequences had higher than 186 
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91% identity at the DNA level (96% at AA level) with cultivated strains and were most closely 187 

related to Pseudomonas stutzeri.  P. stutzeri is a commonly isolated marine denitrifier, but it is 188 

also known to possess the capacity for N fixation (Krotzky and Werner 1987). OTU-4, OTU-6  189 

and OTU-8 also contained Gammaproteobacterial sequences.   All had high identity with 190 

cultivated strains at the protein level but none were >91% identical to cultivated strains at the 191 

DNA level.  192 

Gammaproteobacterial sequences with very close identities to Azotobacter vinelandii have 193 

been reported from the Arabian Sea ODZ and also from the ETSP (Turk-Kubo et al. 2014). This 194 

group of nifH sequences with close identities to A. vinelandii was also retrieved from the English 195 

Channel, Himalayan soil, South Pacific gyre, Gulf of Mexico, mangrove soil and many other 196 

environments (Figure 3). Azotobacter- like sequences were included in OTU-6 but were not closest 197 

identity at the DNA level.  Although a large number of clones were analyzed here, no sequence that 198 

was closely associated with A. vinelandii was retrieved from the three regions. None of the g-199 

244774A11 sequences, Gammaproteobacterial relatives that were abundant in the South Pacific 200 

(Moisander et al. 2014), were detected in this study.   201 

OTUs-2, 3, 5, 10, and 11 all represented Alphaproteobacterial sequences, with closest 202 

identities to various Bradyrhizobium, Sphingomonas and Methylosinus species.  Thus, 203 

Alphaproteobacterial sequences (206 sequences) were the most abundant in the clone library. OTU-2 204 

contained almost exclusively ETSP ODZ DNA and cDNA sequences (plus one AS ODZ DNA 205 

sequence). OTU-3 contained DNA sequences from ETNP surface waters. OTU-5 contained 206 

exclusively Arabian Sea DNA sequences from Station 3, while OTU-10 contained only surface 207 

samples from the ETNP.  An OTU threshold of 11% grouped all (179 sequences in five OTUs) of 208 
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these Alphaproteobacterial sequences together, but the 3% threshold is consistent with the 209 

phylogenetic tree, which shows small scale biogeographical separation of sequence groups.     210 

OTUs-7 and -9 were identified as Betaproteobacteria with closest identities to Rubrivivax 211 

gelatinosum and Burkholderia, 91 and 90% respectively at the DNA level. However, at the AA 212 

level, these sequences were 99 and 100% identical to Novosphingobium malaysiense and S. 213 

azotifigens, both Alphaproteobacteria, and again were biogeographically distinct.  OTU-7 contained 214 

25 DNA sequences from the ODZ depths in the Arabian Sea, and OTU-9 contained 17 215 

Burkholderia-like sequences from the oxycline at Station 1 in the Arabian Sea.  No 216 

Betaproteobacterial nifH sequences were detected in the ETNP or ETSP, but sequences similar to 217 

Burkholderia phymatum, Cupriavidus sp. and Sinorhizobium meliloti were reported from ETSP 218 

previously (Fernandez et al. 2015).  Consistent with our previous report, however, there is no clear 219 

separation between the alfa and the beta groups in nifH phylogeny (Jayakumar et al 2017). 220 

Most of the Cluster I ETSP sequences from this study were contained in two OTUs (2 and 4). 221 

OTU-2 contained 89 Alphaproteobacterial sequences with >98% identity to nifH sequences from 222 

Bradyrhizobium sp. Uncultured bacterial sequences retrieved from the South China Sea, English 223 

Channel, mangrove sediment, wastewater treatment and grassland soil were related to these ETSP 224 

sequences.  OTU-4 contained 29 Gammaproteobacterial sequences retrieved from both surface and 225 

ODZ depths.   Four of the remaining ETSP Cluster I sequences were grouped together as OTU-17 226 

(Alphaproteobacteria, 89 and 96% identities with Methyloceanibacter sp. and Bradyrhizobium sp. at 227 

the DNA and AA level respectively), three were in OTU-23 (Bradyrhizobium 100% identity) and 228 

two were singletons.  One of the singletons was most closely related to uncultured soil and sediment 229 

sequences and to Azorhizobium sp. (86%) and one had 97% identity with Bradyrhizobium 230 

denitrificans and many sequences from marine sediments. 231 
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OTU-22 represents the Deltaproteobacterial group.  This novel group was reported 232 

previously from the ETNP (Jayakumar et al. 2017) and has three sequences from Arabian sea (OTU-233 

22) and two singletons from ETNP surface waters. nifH possessing Deltaproteobacteria have been 234 

reported not only from all the three ODZs but also in several other marine environments including 235 

Chesapeake Bay water column, microbial mats from intertidal sandy beach in a Dutch barrier island, 236 

Jiaozhou Bay sediment, Rongcheng Bay sediment, Bohai Sea, Mediterranean Sea, Narragansett Bay, 237 

and the south Pacific gyre. 238 

Although Trichodesmium like clones have been retrieved from the surface waters of the 239 

Arabian Sea and the ETNP OMZs, only ten clones (OTU-12) in the combined clone library analyzed 240 

here were related to Trichodesmium (98% identity), including both cDNA and DNA from the 241 

Arabian Sea and cDNA from the ETNP.  These sequences were actually 100% identical to 242 

Katagnymene spiralis, a close relative of Trichodesmium isolated from the South Pacific Ocean. 243 

Turk-Kubo et al. (2014) also retrieved only a few cyanobacterial sequences from the ETSP. No other 244 

cyanobacterial nifH sequences were identified. 245 

Clusters II, III, IV nifH OTU distributions:   The other three nifH clusters were combined 246 

for OTU analysis due to the limited number of sequences and OTUs obtained.  A total of 18 OTUs 247 

were identified in the combined set of 275 sequences with a 3% distance threshold (Table 2).  Most 248 

of the Cluster II, III, IV sequences were from the ETNP and ETSP.  As with the Cluster I sequences, 249 

there was very little geographic and depth overlap among these OTUs (Figure 4A, 4B).  Only OTU-250 

1 contained sequences from more than one site, the ETNP and the ETSP.  OTU-2 contained only 251 

cDNA sequences representing ODZ depths at both ETNP stations.  OTU-3 contained exclusively 252 

ETSP DNA sequences from surface and cDNA  sequences from ODZ depths. Only 10 of the Cluster 253 

II, III, IV sequences were from the Arabian Sea, and they formed three separate OTUs, a greater 254 
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“OTU density” than was present at either of the Pacific sites.  As observed for Cluster I, most of the 255 

OTUs that were detected in the DNA were not being expressed, and those that were expressed were 256 

not detected in the DNA (Figure 4C). 257 

Rarefaction curves (Figure 5) indicate that sampling for Cluster II, III, IV did not 258 

approach saturation.  The Chao statistic also indicated that much diversity remains to be 259 

explored, despite the great uncertainty in these estimates.  Unlike the Cluster I analysis, there 260 

were relatively few singletons in the Cluster II, III, IV data and the assemblages were dominated 261 

by a few types. 262 

Clusters II, III, IV nifH phylogeny:  Three large OTUs (OTU-1, -4 and -6) in Clusters II, 263 

III, IV belonged to nifH Cluster IV and Alphaproteobacteria/Spirochaeta and Deltaproteobacteria  264 

were the dominant phylogenies (Table 2, Figure 6).  The largest OTU, OTU-1, contained 88 DNA 265 

sequences from the ETNP ODZ depths from both stations and from both depths in the ETSP. This 266 

OTU had no similarity to any cultured microbe.  OTU-4 contained 30 sequences from the ETSP, all 267 

cDNA from one surface station, in nifH Cluster IV.   268 

OTU-2 (75 sequences) in Cluster II contained only cDNA sequences, all from ODZ 269 

samples in the ETNP (both stations), and had no close relatives among cultivated species.  Turk-270 

Kubo et al. (2014) also retrieved a few clones identified as belonging to Cluster II from the 271 

euphotic zone of the ETSP. OTU-3 contained 35 sequences in Cluster III and was dominated by 272 

DNA sequences from surface depths of the ETSP.  OTU-5 represented Deltaproteobacteria in 273 

nifH Cluster III and contained 18 identical DNA sequences from 90 m at Station BB1 in the 274 

ETNP. Thus, of the five most common OTUs (89% of the total Cluster II, III, IV sequences 275 

analyzed), only one could be identified to a closely related genus (i.e., OTU-4 with 90% identity 276 
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with R. palustris) and there was no overlap between DNA and cDNA OTUs from the same 277 

depths.  278 

The other 13 OTUs in the Cluster II, III, IV sequences represented either Cluster III or IV.  279 

None of these were very closely related to any cultivated sequences. OTU-6 contained both DNA 280 

and cDNA from the OMZ at one ETSP station.  OTU-7 contained four sequences from ETNP 281 

surface waters with close identities with a sequence retrieved from Bohai sea.  OTU-11, had one 282 

DNA and one cDNA sequences from the ETSP. All of the other sequences were less than 84% 283 

identical to any sequence in the database and could only be loosely identified as Firmicutes or 284 

Proteobacteria. 285 

  286 

Conclusions 287 

The OMZ regions of the world ocean contain substantial nifH diversity, both in surface 288 

waters and oxygen depleted intermediate depths.  Surface waters contained greater diversity for 289 

Cluster I, but the ODZ held the highest diversity for Clusters II, III, IV.  Cyanobacterial sequences 290 

were rare and were not detected in the ETSP.  The ETSP contained the least diversity of Cluster I 291 

sequences, while Cluster II, III, IV were least abundant and least diverse in the Arabian Sea.  Most 292 

of the sequences in all four Clusters of the conventional nifH phylogeny were not closely related to 293 

any sequences from cultivated Bacteria or Archaea.  The most abundant OTUs in Cluster I and in 294 

Clusters II, III, and IV could be assigned to the Alphaproteobacteria, followed by the 295 

Gammaproteobacteria for Cluster I and Deltaproteobacteria accounted for Clusters II, III, IV 296 

sequences.  Most of the OTUs were not shared among regions, depths or DNA vs cDNA and 297 

sometimes were restricted to individual samples.  Some Cluster I sequences had high identity to 298 

known species (e.g., Bradyrhizobium, Trichodesmium) but most of the Cluster II, III, IV sequences 299 
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were only distantly related to any cultured species.  While measurements of N2 fixation rates are not 300 

reported here, the abundance of cDNA sequences suggests that the cells harboring these genes are 301 

active.  Low, but analytically significant, rates have been detected in ODZ depths in the ETNP 302 

(Jayakumar et al. 2017) and ETSP (Chang et al. 2019), which suggests that non-cyanobacterial N 303 

fixation could make a minor contribution to the nitrogen budget of the ocean.  It is therefore 304 

important in future work to determine how the diversity described here actually contributes to 305 

biogeochemically significant reactions and what environmental and biotic factors might influence or 306 

control the activity of diazotrophs in the dark ocean. 307 

 308 

  309 
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Figure Legends 310 

Figure 1.  Histogram of the 12 most common OTUs from Cluster I nifH clone libraries from the 311 

three OMZ regions.   OTUs were considered common if the total number of sequences in an 312 

OTU was ≥2% of the total number of nifH clones analyzed (The common OTUs contained 441 313 

of the 512 Cluster I sequences). OTUs were defined according to 3% nucleotide sequence 314 

difference using the furthest neighbor method.  OTU designation is from most common (OTU-1) 315 

to least.  A) OTU distribution among regions.  B) OTU distribution between OMZ (including 316 

core of the ODZ and the upper oxycline depths) and surface depths (oxygenated water).  C)  317 

OTU distribution of cDNA vs DNA clones. 318 

 319 

 320 

Figure 2.  Rarefaction curve displaying observed OTU richness versus the number of clones 321 

sequenced for Cluster I nifH sequences (cDNA and DNA). OTUs were defined and designated as 322 

in Figure 1.  Chao estimators (individual symbols) are shown for each of the same subsets 323 

represented in the rarefaction curves. 324 

 325 

Figure 3.  Phylogenetic tree of Cluster 1 based on amino acid sequences.  Positions of the OTUs 326 

are  shown relative to their nearest neighbors from the database.  Individual sequence identities 327 

comprising each OTU are listed in Supplemental Table 2. 328 

 329 

Figure 4.  Histogram of the 6 most common OTUs from Cluster I nifH clone libraries from the 330 

three OMZ regions.   OTUs were considered common if the total number of sequences in an 331 

OTU was ≥2% of the total number of nifH clones analyzed (the common OTUs contained 252 of 332 
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the 275 Cluster II, III, IV sequences). OTUs were defined according to 3% nucleotide sequence 333 

difference using the furthest neighbor method.  OTU designation is from most common (OTU-1) 334 

to least.  A)  OTU distribution among regions.  B)  OTU distribution between OMZ (including 335 

core of the ODZ and the upper oxycline depths) and surface depths (oxygenated water).  C)  336 

OTU distribution of cDNA vs DNA clones. 337 

 338 

Figure 5. Rarefaction curve displaying observed OTU richness versus the number of clones 339 

sequenced for Cluster II, III, IV nifH sequences (cDNA and DNA). OTUs were defined and 340 

designated as in Figure 4.  Chao estimators (individual symbols) are shown for each of the same 341 

subsets represented in the rarefaction curves. 342 

 343 

Figure 6.  Phylogenetic tree of Clusters II, III, IV based on amino acid sequences.  Positions of 344 

the OTUs are  shown relative to their nearest neighbors from the database.  Individual sequence 345 

identities comprising each OTU are listed in Supplemental Table 2. 346 

 347 

 348 

Tables 349 

Table 1.  OTU summary for both clusters 350 

Richness and diversity statistics for nifH clone libraries from three OMZ regions.  ACE and 351 

Chao are non-parametric estimators that predict the total number of OTUs in the original sample. 352 

 353 

Table 2.  OTU identities for both clusters 354 
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Cultivated species with closest nucleotide identity to the OTUs identified in the nifH clone 355 

libraries from three OMZ regions.  Only the 12 most common OTUs (out of 41 total) are listed 356 

for Cluster 1 sequences, and the six most common (out of 18 total) for the Clusters II, III, IV 357 

libraries. 358 

 359 

Supplemental 360 

 361 

S Table 1A and B.  List of sequences in each OTU for both clusters 362 

S Table 2 363 

 364 
 365 

 366 
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 437 
Figure.1 438 
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Figure. 2 440 
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Figure. 3 443 
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Figure. 4 446 
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Figure. 5. 449 

 450 
  451 

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350

Nu
m

be
r o

f O
TU

s

Number of Clones Sampled

All Cluster234
ODZ
ETNP
Surface
ETSP
AS
All Cluster234
ODZ
ETNP
Surface
ETSP
AS

https://doi.org/10.5194/bg-2019-445
Preprint. Discussion started: 13 January 2020
c© Author(s) 2020. CC BY 4.0 License.



 25 

Figure 6. 452 
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Table 1 OTU Summary 455 

Sample subset  

Depths, 
regions 
included 

No. of 
Sequences 

No. of 
Unique 
Sequences 

No. of 
OTUs 
(cutoff ~3) 

OTU
/seq Shannon Simpson Chao Ace 

Cluster I           
AS 

 
Arabian Sea, 
all depths 

178 36 14 0.079 1.8 0.22 21 45 

ETNP 
 

ETNP, all 
depths 

207 80 25 0.121 2.37 0.14 37 34 

ETSP 
 

ETSP, OMZ 
depths 

127 51 6 0.047 0.87 0.53 7 8 

All ClusterI 
 

Three 
regions, all 
depths 

512 165 41 0.080 2.7 0.11 59 67 

All ClusterI DNA 
 

Three 
regions, all 
depths 

257 97 35 0.136 2.8 0.08 42 45 

All ClusterI cDNA 
 

Three 
regions, all 
depths 

255 75 24 0.094 1.7 0.25 24 27 

All ClusterI Surface 
 

Three 
regions, 
surface 
depths 

198 73 25 0.126 2.5 0.10 52 75 

All ClusterI OMZ 
 

Three 
regions, all 
depths 

314 98 23 0.073 0.9 0.23 30 37 

           
Clusters II, III, IV 

          

AS 
 

Arabian Sea, 
all depths 

10 6 3 0.300 1.09 0.27 3 3 

ETNP 
 

ETNP, all 
depths 

134 49 8 0.060 1.19 0.39 14 38 

ETSP 
 

ETSP, all 
depths 

131 64 8 0.061 1.37 0.30 9 19 

All Clusters II,III,IV 
 

Three 
regions, all 
depths 

275 117 18 0.065 1.88 0.21 28 26 

All Clusters II,III,IV 
DNA 

Three 
regions, all 
depths 

155 65 12 0.077 1.20 0.37 22 17 

All Clusters II,III,IV 
cDNA 

Three 
regions, all 
depths 

120 56 9 0.075 1.11 0.45 12 15 

All Clusters II,III,IV 
Surface 

Three 
regions, 
surface 
depths 

86 46 6 0.070 1.32 0.29 7 13 

All Clusters II,III IV 
OMZ 

Three 
regions, OMZ 
depths  

189 76 15 0.079 1.57 0.29 46 24 

 456 
 457 
 458 

459 
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Table 2 460 
 461 

 
No. of 
Sequences 

Phylogenetic 
Affiliation 

Closest cultured 
relative (DNA) 

Identity 
DNA % 

Coverage 
% 

Closest cultured 
relative (Protein) 

Identity 
AA % 

Coverage 
% 

Cluster 
I         

OTU-1 129 Gamma Psuedomonas 
stutzeri 

91 98 Pseudomonas 
stutzeri strain 
SGAir0442 

95.8 99 

OTU-2 89 Alpha Bradyrhizobium sp 99 100 Bradyrhizobium 
denitrificans strain 
LMG 8443 

99 99 

OTU-3 40 Alpha Bradyrhizobium 
sp. TM124 

94 98 Bradyrhizobium sp. 
MAFF 210318 

99 98 

OTU-4 29 Gamma Marinobacterium 
lutimaris 

87 100 Oleibacter sp 100 99 

OTU-5 29 Alpha Methylosinus 
trichosporium 

92 99 Sphingomonas 
azotifigens 

99 100 

OTU-6 25 Gamma Azotobacter 
chroococcum 
strain B3 

81 99 Psuedomonas 
stutzeri 

94 99 

OTU-7 25 Beta/Alpha Rubrivivax 
gelatinosus  

91 99 Novosphingobium 
malasiense 

99 100 

OTU-8 17 Gamma Psuedomonas 
stutzeri 

91 98 Azotobacter 
chroococcum strain 
B3 

97 100 

OTU-9 17 Beta/Alfa Burkholderia 90 100 Sphingomonas 
azotifigens 

100 100 

OTU-10 16 Alpha Bradyrhizobium  97 98 Bradyrhizobium sp. 
ORS 285 

99 99 

OTU-11 15 Alpha Bradyrhizobium  97 98 Bradyrhizobium 
diazoefficiens 

98 99 

OTU-12 10 Cyanobacterium Katagnymene 
spiralis 

100 99 Trichodesmium 
erythraeum 

100 99 
         

Clusters II, III IV 
       

OTU-1 88 Alpha/Spirochaet
aceae 

Rhizobium sp 74 59 Treponema primitia 
ZAS-1] 

55 98 

OTU-2 75 Delta/Firmicutes Geobacter 73 43 Desulfitobacterium 
hafniense 

98 61 

OTU-3 35 Verrumicrobia Opitutaceae 
bacterium 

82 99 Coraliomargarita 
akajimensis 

95 99 

OTU-4 30 Alpha Rhodopseudomon
as palustris 

90 98 Rhodoplanes 
elegans 

96 99 

OTU-5 18 Delta/Chlorobi Desulfovibrio 
piezophilus 

79 99 Prosthecochloris 
sp. V1, 
Chloroherpeton 
thalassium, 
Chloroherpeton 
thalassium 

92 99 

OTU-6 6 Beta/Delta Azoarcus 
communis 

70 88 Enhygromyxa salina 70 74 

OTU-7 4 Delta Desulfovibrio 
carbinolicus strain 
DSM 3852 

81 99 Desulfovibrio 
inopinatus 

90 99 

OTU-8 4 Delta/Firmicutes Desulfovibrio 
desulfuricans 
strain IC1 

77 100 Sporobacter 
termitidis 

99 99 

https://doi.org/10.5194/bg-2019-445
Preprint. Discussion started: 13 January 2020
c© Author(s) 2020. CC BY 4.0 License.



 28 

OTU-9 3 Delta/Lentisphae
rae 

Desulfovibrio 
magneticus RS-1 
DNA 

84 100 Lentisphaerae 
bacterium 
GWF2_57_35, 
Desulfatitalea 
tepidiphila, 
Desulfobacteraceae 
bacterium 

84 100 

OTU-10 3 Delta/Methanoc
occi 

Desulfovibrio 
desulfuricans 
strain IC1 

77 100 Methanocaldococcus 
villosus 

65 99 

OTU-11 2 Verrucomicrobi
a 

Verrucomicrobia 
bacterium S94 

87 100 Verrucomicrobia 
bacterium S94 

97 99 

 462 
 463 
 464 
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